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Figure 2.2: Schematic derivation of a two-body bound-state equation. The first row
illustrates Dyson’s equation (2.18). The behavior at the mass pole defines the bound-
state amplitude and leads to the corresponding bound-state equation (second row).

permuted 2-body kernels K
(2)

i

⌦ S�1

i

[65–67]. With the notation of (2.16), the kernel
eK(3) reads

eK(3) = eK
(3)

irr

+
3

X

i=1

eK
(2)

i

, (2.20)

where the subscript i identifies the spectator quark. eK(3) is illustrated in Fig. 2.3.

Bound-state equations. At the pole corresponding to the bound-state mass M ,
bound-state amplitudes  are introduced as the residues of the scattering matrix via

T (n)

P

2!�M

2������! N   
P 2 + M2

, (2.21)

where P is the total momentum of the n quarks. The possibly dimensionful constant
N accounts for the dimensionality of T (n) and depends on the spin of the resulting
particle. For instance, the propagators of free spin-0 and spin-1/2 particles are given
by:

J = 0 :
1

P 2 + M2

, J = 1/2 :
�i/P + M

P 2 + M2

= 2M
⇤

+

(P )
P 2 + M2

. (2.22)

For a scalar or pseudoscalar particle: N = 1. In the spin-1/2 case, the matrix-valued
amplitude  includes the positive-energy projector ⇤

+

(P ) = (1+ /̂P )/2 (cf. Section 4),
where P̂ denotes the normalized total momentum; this yields N = 2M .

Inserting the pole condition (2.21) into Dyson’s equation and comparing the residues
of the most singular terms leads to a bound-state equation at the pole P 2 = �M2, cf.
Fig. 2.2. An examination of the relation T 0 = �T (T�1)0 T at the bound-state pole,
where 0 denotes the derivative d/dP 2, yields the associated canonical normalization
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1 Background: Why is QCD bound-state problem difficult?

• Relativistic	bound	states

“These problems are those involving bound states [...] such problems necessarily involve a breakdown 
of ordinary perturbation theory. [...] The pole therefore can only arise from a divergence of the sum of 
all diagrams […]”

• Strongly	coupled	systems

QCD running coupling constant •AsymptoJc	freedom:	Bonds	between	parJcles	become	
asymptoJcally	weaker	as	energy	increases	and	distance	
decreases	(Nobel	Prize).	

•Quark	and	Gluon	Confinement:	No	maSer	how	hard	one	
strikes	the	proton,	one	cannot	liberate	an	individual	quark	
or	gluon.	

•Dynamical	Chiral	Symmetry	Breaking:	Mystery	of	bound	
state	masses,	e.g.,	current	quark	mass	(Higgs)	is	small,	
and	no	degeneracy	between	parity	partners.

The QFT book vol1 p564 Weinberg
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Full 
QCD ObservablesX

Lattice	QCD,	Dyson-Schwinger	equations,	chiral	perturbation,	AdS/QCD,	NJL	model,	…	

1 Background: Non-perturbative approaches of QCD
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Classical Mechanics Quantum Field Theory

Principle of Least Action

Equations of Motion (EoM)

Euler-Lagrange Equation Dyson-Schwinger Equations

Generalized coord. Fields on spacetime

Degrees of freedom

2 DSE: EoM of QCD’s Green functions
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G. Eichmann, arXiv:0909.0703

2 DSE: EoM of QCD’s Green functions
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G. Eichmann, arXiv:0909.0703

✦ Green functions of 
different orders 
couple together.

✦ Most equations are 
very complicated.
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G. Eichmann, arXiv:0909.0703

✦ Green functions of 
different orders 
couple together.

✦ Most equations are 
very complicated.

q Modeling

q Truncation

2 DSE: EoM of QCD’s Green functions



• Two-body Bethe-Salpeter equation

9

22 Mesons

-1
=

-1 +
 

݈
ݍ

݇

Figure 3.1: The quark DSE (3.2) in pictorial form.

The dressed quark-gluon vertex consists of 12 tensor structures and can be written as

�µ(l, k, µ) =
4

X

i=1

⇣

f
(1)

i

i�µ + f
(2)

i

lµ + f
(3)

i

kµ

⌘

⌧
i

(l, k) , (3.5)

where the f
(j)

i

(l2, l ·k, k2, µ2) are Lorentz-invariant dressing functions. A possible rep-
resentation of the Dirac basis elements is given by

⌧
i

(l, k) = {1, /k, l/, [ l/, /k]} . (3.6)

The four longitudinal basis elements ⇠ kµ do not survive in the quark-DSE integral
because of the transversality of the gluon propagator. Likewise, only the transverse
projections of the remaining ones provide a non-vanishing contribution. In accordance
with the notation of the quark propagator’s dressing functions, the two covariants i�µ

and lµ are referred to as the vector and scalar components, respectively.
Using the STIs in Landau gauge, Z

1F

= Z
2

/Z̃
3

and Z
g

Z̃
3

Z
1/2

3

= 1, where Z̃
3

, Z
3

and Z
g

are ghost, gluon and charge renormalization constants, the quark self-energy
integral of Eq. (3.3) becomes

⌃(p, µ,⇤) = �16
3

Z2

2

⇤

Z

q

i�µS(q, µ)
Tµ⌫

k

k2

4

X

i=1

⇣

↵
(1)

i

i�⌫ + ↵
(2)

i

l⌫
⌘

⌧
i

(l, k), (3.7)

where we defined the coe�cients ↵
(j)

i

as combinations of the gluon dressing function
and the vertex dressings:

↵
(j)

i

(l2, l·k, k2) =
g2

4⇡

1
Z

2

Z̃
3

Z(k2, µ2) f
(j)

i

(l2, l·k, k2, µ2). (3.8)

They are independent of the renormalization point, as can be inferred from Z
g

Z̃
3

Z
1/2

3

=
1 and the renormalization-scale dependence of the quantities g ⇠ 1/Z

g

, Z ⇠ 1/Z
3

and
f

i

⇠ Z
2

/Z̃
3

.

Solution of a coupled DSE system. Both gluon propagator and quark-gluon vertex
satisfy their own DSEs. Progress on a consistent solution of this system of DSEs has

• Three-body form factor equation

• One-body gap equation

2 DSE: Most frequently used equations

�µ
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2 DSE: Simplest approximation of QCD DSEs

I.	Gluon	propagator

II.	Quark-gluon	vertex

III.	Scattering	kernel

IV.	6-point	Green	function
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IV.	6-point	Green	function triangle diagram
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✦ In the chiral limit, the color-singlet av-WGTI (chiral symmetry) is written as

2 DSE: Simplest approximation of QCD DSEs



11

✦ In the chiral limit, the color-singlet av-WGTI (chiral symmetry) is written as

✦ Assuming DCSB, i.e., the mass function is nonzero, we have the following identity

2 DSE: Simplest approximation of QCD DSEs



11

✦ In the chiral limit, the color-singlet av-WGTI (chiral symmetry) is written as

✦ Assuming DCSB, i.e., the mass function is nonzero, we have the following identity

✦ The axial-vector vertex must involve a pseudo scalar pole (Goldstone theorem)

2 DSE: Simplest approximation of QCD DSEs



11

✦ In the chiral limit, the color-singlet av-WGTI (chiral symmetry) is written as

✦ Assuming DCSB, i.e., the mass function is nonzero, we have the following identity

✦ The axial-vector vertex must involve a pseudo scalar pole (Goldstone theorem)

✦ Assuming there is a radially excited pion, its decay constant vanishes

2 DSE: Simplest approximation of QCD DSEs



11

✦ In the chiral limit, the color-singlet av-WGTI (chiral symmetry) is written as

✦ Assuming DCSB, i.e., the mass function is nonzero, we have the following identity

✦ The axial-vector vertex must involve a pseudo scalar pole (Goldstone theorem)

DCSB	means	much	more	than	massless	pseudo-scalar	meson.

✦ Assuming there is a radially excited pion, its decay constant vanishes

2 DSE: Simplest approximation of QCD DSEs
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2 DSE: Summary

Gluon	propagator:	Solve	the	gluon	DSE	or	extract	information	from	lattice	QCD.	The	
dressing	function	of	gluon	has	a	mass	scale	as	that	of	quark.

Quark-gluon	vertex	+	Scattering	kernel:	Analyze	continuous	(WGTIs	or	STIs)	&	discrete	
symmetries.	The	kernel	(RL)	preserves	the	chiral	symmetry	which	makes	pion	to	play	a	
twofold	role:	Bound-state	and	Goldstone	boson.

Form	factor:	Generalize	the	wave	function	normalization	condition.	The	form	factor	
(the	triangle	diagram)	preserves	the	current	conservation.
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✦ DCSB:	
1. The	quark's	effective	mass	runs	
with	its	momentum.	

2. The	most	constituent	mass	of	a	
light	quark	comes	from	a	cloud	
of	gluons.

✦ Confinement:	
Although	we	exactly	know	few	
knowledge	about	confinement,	
the	positivity	violation	of	quark	
spectral	density	supports	a	fact	
that	a	asymptotically	free	quark	
is	unphysical.	In	this	sense,	we	
say	that	quarks	are	confined.

3 Application: Realization of DCSB & Confinement
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3 Application: Off-Shell pions and kaons

Sullivan processes, in which a nucleon’s pion cloud 
is used to provide access to the pion’s (a) elastic form 
factor and (b) parton distribution functions.

✦ Experiments	use	a	nucleon’s	virtual	pion	
cloud	as	a	pion	target,	e.g.,	the	processes	
are	usually	involved:
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Sullivan processes, in which a nucleon’s pion cloud 
is used to provide access to the pion’s (a) elastic form 
factor and (b) parton distribution functions.

✦ Experiments	use	a	nucleon’s	virtual	pion	
cloud	as	a	pion	target,	e.g.,	the	processes	
are	usually	involved:

✦ How	does	the	pion’s	virtuality	affect	its	
properties	and	further	affect	the	related	
processes?

✦ Is	there	a	critical	virtuality	above	which	a	
Sullivan-like	process	cannot	provide	
reliable	access	to	a	meson	target?
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✦ In QFT, bound-states are encoded in Green functions.

G(4) G(4)K(2)= +G(4)
0

3 Application: Off-Shell pions and kaons
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✦ In QFT, bound-states are encoded in Green functions.

G(4) G(4)K(2)= +G(4)
0

✦ The kernel can be decomposed by its orthogonal eigenbasis, which are classified 
by JP quantum number and radial quantum number nr,

G(4) G(4)K(2)= +G(4)
0

✦ Accordingly, the four-point Green function can be decomposed:

3 Application: Off-Shell pions and kaons
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1

MESON FORM FACTOR

The Dyson-Schwinger equation of the quark–anti-quark four-point Green function is written as
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= +
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Rearranging the above equation, we can obtain the following identity

2

4
 !�1

� K(2)

3

5 G(4)

= 1 . (2)

Equivalently, we have

G(4)

2

4
 !�1

� K(2)

3

5 G(4)

=

G(4) . (3)

If the quark and anti-quark can form a bound state, then we have the on-shell condition

G(4) ⇠ + Regular term . (4)

Inserting the on-shell condition into Eq. (3), we obtain

2

4
 !�1

� K(2)

3

5
= , (5)

where the regular terms have been suppressed. Then the wave-function of the bound state is normalized as

lim

on-shell

1

P 2

+M2

8
<

:

2

4
 !�1

� K(2)

3

5

9
=

; = 1 . (6)

Since the left-hand side of the above condition is a form of

0

0

, its di↵erential form can be written as

8
<

:
@

@Pµ

2

4
 !�1

� K(2)

3

5

9
=

; = 2Pµ . (7)

Explicitly, the loop integral, which only depends on the total momentum P , can be written as

F(P ) =

2

4
 !�1

� K(2)

3

5
(8)

=

Z

q
�↵�(q+, q�)S

�1

↵� (q+)S
�1

�� (q�)�̄��(q+, q�)�
Z

q

Z

q0
�↵�(q+, q�)K↵�,��(q+, q�, q

0
+

, q0�)�̄��(q
0
+

, q0�) . (9)

We introduce a momentum Q with the following constrain

✓
P ± Q

2

◆
2

= �M2, (10)

and define two functions

G
+

(P,Q) =

Z

q
�↵�

✓
q
+

+

Q

2

, q�

◆
S�1

↵�

✓
q
+

+

Q

2

◆
S�1

�� (q�)�̄��

✓
q
+

� Q

2

, q�

◆

�
Z

q

Z

q0
�↵�

✓
q
+

+

Q

2

, q�

◆
K↵�,��

✓
q
+

+

Q

2

, q�, q
0
+

+

Q

2

, q0�

◆
�̄��

✓
q0
+

� Q

2

, q0�

◆
, (11)

G�(P,Q) =

Z

q
�↵�

✓
q
+

+

Q

2

, q�

◆
S�1

↵�

✓
q
+

� Q

2

◆
S�1

�� (q�)�̄��

✓
q
+

� Q

2

, q�

◆

�
Z

q

Z

q0
�↵�

✓
q
+

+

Q

2

, q�

◆
K↵�,��

✓
q
+

� Q

2

, q�, q
0
+

� Q

2

, q0�

◆
�̄��

✓
q0
+

� Q

2

, q0�

◆
. (12)

✦ The wave function of the bound state has to satisfy the following condition

3 Application: Off-Shell pions and kaons
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✦ The wave function of the bound state has to satisfy the following condition
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3 Application: Off-Shell pions and kaons

✦ The generalized homogeneous Bethe-Salpeter equation can be obtained as
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3 Application: Off-Shell pions and kaons

✦ The generalized homogeneous Bethe-Salpeter equation can be obtained as
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✦ The	eigenvalue	is	linear	to		the	virtuality	
less	than	45	(																															)	

✦ Recalling	the	Green	function’s	structure

the	change	in	λ	is	purely	kinematic	and,	
hence,	the	pion	pole	dominates	the	quark-
antiquark	scattering	matrix.

3 Application: Off-Shell pions and kaons

✦ The	UV	shifts	of	the	BS	amplitudes	grow	
with	the	virtuality	less	than	31	and	that	
growths	are	almost	linear.	This	leads	to	a	
linear	growth	of	the	in-pion	condensate:
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3 Application: Off-Shell pions and kaons
✦ With	the	virtuality	increasing,	the	pion	

has	a	smaller	radius	and	becomes	more	
point-like.
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3 Application: Off-Shell pions and kaons
✦ With	the	virtuality	increasing,	the	pion	

has	a	smaller	radius	and	becomes	more	
point-like.

✦ For														,	the																								form	factor	
responds	linearly	to	changes	in	the	BS	
amplitudes	and	such	modifications	
should	become	evident	on	this	domain.

✦ The	computed	form	factor	can	be	
interpolated	by	a	monopole	multiplied	
by	a	simple	factor	that	restores	the	
correct	QCD	anomalous	dimension.



19

3 Application: Off-Shell pions and kaons

✦ The	pion’s	twist-two	valence-quark	PDA	is	
connected	with	the	large-Q2	form	factor:

Chang,	et	al,	PRL	111,	141802	(2013)
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3 Application: Off-Shell pions and kaons

✦ The	pion’s	twist-two	valence-quark	PDA	is	
connected	with	the	large-Q2	form	factor:

Chang,	et	al,	PRL	111,	141802	(2013) ✦ we	can	use	GPDs	to	translate	the	behavior	
of																		into	insights	regarding	the	
impact	of	virtuality	on	extractions	of	the	
pion’s	valence-quark	PDF:
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3 Application: Off-Shell pions and kaons

✦ The	pion’s	twist-two	valence-quark	PDA	is	
connected	with	the	large-Q2	form	factor:

Chang,	et	al,	PRL	111,	141802	(2013) ✦ we	can	use	GPDs	to	translate	the	behavior	
of																		into	insights	regarding	the	
impact	of	virtuality	on	extractions	of	the	
pion’s	valence-quark	PDF:

✦ The	critical	virtuality,	below	which	the	
virtual	particles	serve	as	a	valid	target,	is
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Summary

Based	on	LQCD	and	QCD’s	symmetries,	the	simplest	method	to	construct	the	gluon	
propagator,	quark-gluon	vertex,	scattering	kernel,	and	form	factor,	is	demonstrated.

A	model-independent	scheme	to	study	the	off-shell	bound	state	is	proposed.	Off-shell	
pions	and	kaons	are	studied	to	suggest	critical	virtualities	for	experiments.

Bound-states	are	ideal	objects	connecting	experiments	and	theories.	QCD	bound-state	
problems	are	difficult	because	of	its	relativistic	and	strongly-couple	properties.
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A	model-independent	scheme	to	study	the	off-shell	bound	state	is	proposed.	Off-shell	
pions	and	kaons	are	studied	to	suggest	critical	virtualities	for	experiments.

Outlook

With	the	sophisticated	method	to	solve	the	DSEs,	we	can	push	the	approach	to	a	wide	
range	of	applications	in	QCD	bound-state	problems.

Hopefully,	after	more	and	more	successful	applications	are	presented,	the	DSEs	may	
provide	a	faithful	path	to	understand	QCD	and	a	powerful	tool	for	general	physics.

Bound-states	are	ideal	objects	connecting	experiments	and	theories.	QCD	bound-state	
problems	are	difficult	because	of	its	relativistic	and	strongly-couple	properties.


